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In a number of cases it is known that, within the framework of the model 

selected to represent the continuous medium, the absence of continuous 

solutions of the equations of motion requires the introduction of sur- 

faces of discontinuity. On these surfaces, changes in the character- 

istics of the media and of the motion occur in the form of jumps. Inthe 

mechanics of continuous media, surfaces of discontinuity are also used 

as convenient approximations in narrow zones where the motion of the 

medium has properties that are essentially different from those in the 

basic field. At the surface of discontinuity it is necessary, in this 

and in other cases, to satisfy conditions that allow the continuous 

solutions on both sides of the surface to be connected. As a rule, these 

conditions physically mean the specification of a definite quantity of 

concentrated excitation on the surfaces of discontinuity (forces, 

sources of matter, energy, etc.) or, in particular, the absence of con- 

centrated excitations on these surfaces. If the surface of discontinuity 

is approximately represented in a thin region within which the proper- 

ties of the motion or of the medium differ from those in the basic field, 

then, generally speaking, in order to determine the magnitude of the 

concentrated excitations it is necessary to investigate the internal 

structure of this thin region. Ordinarily, the dynamic conditions onthe 

surfaces of discontinuity are deduced from the laws of conservation of 

mass, energy, and momentum, taken in integral form. This was first done 

for arbitrary continuous media in the classical work of Kochin [II. 

In many cases of ideal media, the relations for the conservation of 

mass, energy, and momentum supply the required number of conditions on 

the surfaces of discontinuity for the specification of the solution. 
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The situation is different in the case of dissipative media; for such 
media certain relations for the conservation of mass, energy, and 
momentum are insufficient. In [zI this circtnnstance was noted in the 
case of a viscous fluid. In [21, the conditions of continuity of the 
tangential component of velocity and temperature were taken as addi- 
tional conditions on the surface of discontinuity in the boundary Layer 

of a viscous, heat-conducting fluid. 

In the present paper, it is shown that the additional relations for 
dissipative roedia may be obtained as ntoment relations of sufficiently 
high order. In particufar, hy this Rteans it is shown that one may obtain 
the conditions of continuity of velocity and tom~era~ure in a viscous, 
heat-conducting fluid. Likewise, it is shown that in the boundary layer 
surfaces of d~s~ont~nu~ty do not exist for the l~ng~tudi~a~ components 
of velocity. 

The absence of discontinuities in the tangential oomponents of the 
velocity is specific to Newtonian viscous fluids; in other dissipative 
media such discontinuities may exist. Xn the paper an example is given 
of a dissipative laediunt in which an initially present velocity discon- 
tinuity does not vanish instantaneousfy, but rather decays exponentially 
with time. An analogous situation may take place for teszperature discon- 
tinuit ies. 

The derivation of additional relations on surfaces of discontinuity 
has special significance for varions models of media with compifcated 
(including higher derivatives) structural dependence of stress on strain, 
strain rate, etc. The emergence of simil.ar models has increased in 
recent times with the development of a large number of new materials. 

I.. We examine the simplest examples at the outset. AS is easy to 
show, the distribution of velocity components u, 2t and the pressure p 
in the incompressitle viscous fluid (Fig. t) 

satisfies the Navier-Stokes effuat;ions outside the surface of discontinu- 
ity. Likewise, it satisfies the conditions of conservation of mass, 
eneqy, and momentum on the surface of discontinuity y = 0. 

However, it is easy to see that this distribution is not possible 
without special external forces, having zero resultant hut nonzero 
resultant moment, * applied on the surface of discontinuity. TO show this, 
we note that within an arbitrarily thin transition layer the properties 
of the ffuid are the same as those in the basio flow. I-Ience, the dis- 
tribution (1.1) is the limit of a distribution in which v 5 0 and p = 
const , as previously, and in which the longitudinal vefoeity u is s 
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smooth function of y that changes monotonically from u1 to u2 on the 
interval - h<,(y<-(h and remains constant outside this interval. Here h 
is an arbitrarily small number. It is clear that any such distribution 
may be realized in a viscous fluid by the application of external body 
forces f, that are directed along the x-axis and distributed according 
to 

(we note that the generalization to the case n f / 
const poses no difficulties). 

/I 

From (1.2) and the assumed character of the 0 / m 
U 

de endence of u on y it follows that fX = 0 for 

IYP 

f 

> h. Integrating (1.2) and observing that I’ 
au/a, = 0 for y = + h, u(h) = ul, u(-h) = u2, we _h- 
_. _ 

ut find 

h h 

f 
fx $4 = 0, c fry & = It @I - %?I (1.3) 

-It, -rh 

Thus, the resultant of the force system applied 
to zero, whereas the resultant moment differs from 
pendent of the thickness of the intermediate layer 

Fig. 1. 

to the fluid is equal 
zero and is inde- 
2h and of the dis- 

tribution of the velocity within this layer. Letting h now go to zero, 
we obtain in the limit the discontinuous distribution (1.1) and verify 
that an applied external couple of magnitude p(ui - u2) per unit area 
acts on the surface of discontinuity, If the external couple on the sur- 
face of discontinuity is absent, then the distribution of longitudinal 
velocities in the viscous fluid varies continuously upon passage through 
the surface of discontinuity. 

We ‘examine another example, which arises in viscous compressible flow 
‘Ihe distribution of the components of velocity, density, and pressure 

u =u,+Aexp(&P), P =plr 0 = 771, P = Pa - PS,z (Y > 0) 

u = 7X@, P = Pa, U = a,, P=Po-wk2 (Y<O) (I.41 

where pa, u0 and A are arbitrary constants and pl, pz, v1 and v2 are 
constants for the auxiliary condition plvl = pZvZ = 7 (for definiteness 
we assume Q < O), satisfies the equations of motion for viscous com- 
pressible flow at y f 0. Th is distribution also satisfies the conditions 
of conservation of mass, rn~nt~~ and energy on the surface of discon- 
tinuity y = 0. Ry analogy with the above, it is possible to show that 
an external couple of magnitude d per unit area acts on the surface of 
discontinuity. If the external couple is not applied, then at y = 0 the 
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longitudinal velocity is continuous (A = 0). 

However, unlike the previous case, besides the external forces 

directed along the x-axis and giving rise to the aforementioned couple, 

there also exist in this example forces fY, directed along the y-axis 

in the intermediate layer. To compute the concentrated excitation aris- 

ing from these forces, we use the momentum 

t# 0 
equations projected on the y-axis 

9 3?g+~_~p8i!=f~ (1.5) 
6 .a 

Introducing, as before, the smoothed dis- 

tribution of the velocity v on the interval 

Jz<y<\<, we obtain from (1,5) 

Fig. 2. 

h 

\ fl/dY = (PV2 + p 
-‘h 

- $A g) [ = 0 (1.6) 
-h 

~~~ltiplyi~g equation (1.5) by y and integrating, we obtain likewise 

Letting h approach zero, we find 

n 

Hence, in addition to the couple associated with the discontinuity 

in the longitudinal velocity, there exists on the surface of discon- 

tinuity a concentrated excitation of the "center of pressure" type and 

of strength 4/3v(vl - V2) per unit area. (The term "center of pressureft 

denotes the concentrated excitation obtained by applying oppositely- 

directed normal stresses on two parallel planes and allowing the dis- 

tance between the planes to go to zero while proportionately increasing 

the applied stresses.) If such a concentrated excitation is absent from 

the surface, then the transverse component of the velocity changes con- 

tinuously. 

'Ihe examples that have been introduced are obvious proof that sur- 

faces of discontinuity in velocity cannot exist in viscous compressible 

flow unless the fluid is subjected to concentrated excitations in the 

form of couples or centers of pressure. 

Indeed, the momentum equations projected on the x- and y-axes are of 

the form 
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Without loss of generality, the coordinate system can be so chosen 
that the surface y = 0 may be assumed to coincide with the surface of 

discontinuity within an arbitrarily small neighborhood R of the given 

point 0 of the discontinuity surface. 

We now investigate (Fig. 2) the region Q( -a <x <u, -h<y <h). 

We multiply both parts of equations (1.9) by y and integrate over the 

region R. On the left sides of the integrated equations (1.9), there 

will occur derivatives of discontinuous functions under the integral 

sign. To compute these derivatives it is necessary, as was done above, 

to smooth out the discontinuous functions in a narrow region -a<x<a, 

-a <Y <Et then to compute the integrals in the usual way, and finally 

to pass to the limit E -, 0. It can be shown that the result will not de- 

pend on the method of smoothing. Estimates show that the results of the 

integration are of the form 

s fxydxdy = 2ap ( Ul - 4 + 0 (ah) + O(2) 

ha 

s fuydxdy=2a&(u1-us) + 0 (ah) + 0 (a”) 

n 

where the subscript 1 denotes instantaneous values at a point above the 

surface of discontinuity, while the subscript 2 denotes a point below 

the surface of discontinuity and O(c) denotes a quantity of order c. We 

now note that 

s f,ydxdy = 2aM + 0 (ah) + 0 (a”) 

D 

‘i 
f,ydxdy = 2uN +0 (ah) + 0 (a”) 

n 

where M and N are the instantaneous magnitudes of the couple and center 
of pressure, respectively, on the surface of discontinuity at the point 

0. Substituting these expressions into the previous equations and pass- 

ing to the limit h - 0 and a - 0, we obtain 



1210 G.1. Rarenblatt 

In particular, if the surface of 

centrated excitations, then itl= N= 
continuity of the velocities. 

and G.G. Chernyi 

discontinuity is free of con- 

0. Hence, we obtain a condition of 

2. In the boundary layer the matter is somewhat different from that 

in viscous flow. Here the coordinates x and y are no longer of equal 

importance. Besides, they are associated with the body about which the 

flow takes place, and one is not allowed, in contrast to the previous 

section, arbitrarily to transform the coordinate system. In a viscous 

compressible fluid, the equations of the nonstationary boundary layer 

have the form [31 

where c is the specific heat at constant volume, T is the temperature, 

k is the heat conductivity, and T is the volumetric magnitude of heat 
generation. 'Ihe essential fact is that the equation for the v component 

of velocity markedly simplifies, in contrast to the Navier-Stokes equa- 

tions, and does not contain the second derivative a'~/'$~. For this 

reason, discontinuities in the transverse 

come possible in the boundary layer. 

component of velocity v be- 

For the derivation of the relations on 

we shall proceed in analogy to Section 1, 

tions (2.1). 

the surface of discontinuity 

starting directly with equa- 

Let us assume that the equation of the surface of discontinuity has 

the form y = A(x, tf. Without loss of generality, it may be assumed that 

%@t(+ t,,) > 0. We examine the region R 

to - z < t *< to + z, z. - a < x Q x0 + a 

A (2, to - 4 < Y < A kh to + 4 (2.2) 

where a and t are small quantities with respect to an order of smallness 

that will be specified later, and x0, t0 are arbitrary quantities. In 

the simpler stationary case, the region Q is specified as follows: 

x0 - aQx<x,+a, A (x0) -h-sY<A bJi_hJ 

We note that on both sides of the surface of discontinuity all of 

the characteristics of the motion are in term3 of functions that are 

continuous with continuous derivatives. By ml(no, to) we denote value3 

of certain characteristics of the motion m(x, y, 1) at a point x = x0, 
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y = Ab,, t,), t = t0 imnediately above the surface of discontinuity. 

l'he value of this quantity directly below the surface of discontinuity 

we shall denote by m2(x to). Then, in virtue of the smallness of a and 

T, the values of m at a 1 points of the region Q lying below the surface f' 

of discontinuity will be close to m2, and at all points lying above the 

surface of discontinuity, close to ml. 

We examine next integrals of the form 

J, = gdxdydt, 
i 

J, = zdxdydt 

h 
s 
a 

J, = \ ‘??dxdydt, J, = \ mdxdydt 
0 la 

(2.3) 

If the function m undergoes a discontinuity on the surface y=A(x,t), 
then the derivatives entering into the first three integrals are general- 

ized functions. thus, to compute these integrals it is necessary, as was 

done in Section 1, to "smooth" the function m in a certain small 

neighborhood of the surface of discontinuity, then to calculate the 

integral by the usual means, and finally to pass to the limit. In this 

process it is necessary to take into account the fact that the quanti- 

ties a/\/& and ah/at are of the order l/J Re, and that within the 

framework of boundary layer theory quantities of this order are con- 

sidered negligible in comparison to unity. In the limit, the integrals 

(2.3) turn out to be independent of the manner of smoothing and to be 

equal to 

J, = 4az g (m, - m,) + 0 (a”z) + 0 (a?) 

J2= 4az ‘$ (m, - m,) + 0 (a”z) + 0 (az”) 

J, = - 4az (mz - m,) + 0 (a”z) + 0 (ar”) 

J4 = 0 (az”) 

(2.4) 

In order to obtain relationships for the conservation of mass, 

momentum, and energy on the surface of discontinuity, it is sufficient 

to integrate equations (2.1) over the region Q, to pass to the limit, 

-r-Oanda-0, and to take into account the fact that on the surface 

of discontinuity there are no concentrated loads, sources of mass, or 

sources of energy. As an example, we carry this out for the law of con- 

servation of momentum. l'he remaining relations are obtained analogously. 

Integrating the second of equations (2.1) over the region Q and using 

(2.4, we find 

s gdxdydt = - 4az (p2 - pJ + 0 (a2z) + 0 (az”) = 0 (2.5) 
&a 
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We divide both sides of (2.5) by 4a-r and pass to the limit T - 0. In 

the relation that is obtained we pass to the limit a - 0, and obtain 

the first relation for the conservation of momentum on the surface of 

discontinuity [21 

Pl--P2 = 0 (2.6) 

Further, integrating the first of equations (2.1) over the region R 

and using (2.4), we obtain 

- l-qg)l+ (Pz - pi) g}- \ f,dz dy dt + 0 (a?) + 0 (a%) = 0 (2.7) 

a 

We now note that 

\ 
fids dy dt = 4azF (z,,, t,) + 0 (UP) + 0 (a%) Gw 

h 

where F is the magnitude of the concentrated load on the surface of dis- 

continuity, and, by virtue of (2.6), p1 - p2 = 0. In addition, it is 

obvious that aI\/at = D, aA/& = tan p, where D is the velocity of pro- 

pagation of the surface of discontinuity and F is the angle of its in- 

clination with the x-axis. Substituting these relations into (2.7) and, 

in analogy to the foregoing, passing to the limit T - 0 and a 4 0, we 
obtain the second relation for the conservation of momentum on the sur- 

face of discontinuity in the form 

Pl @ + Ul WuJ p - ~1) ~1 + CL (g), + F = 

= Pz CD + u2 tan P - 3) % + IL (&)z (2.9) 

If there are no concentrated forces, then F E 0, and the relation 

(2.9) takes on the form given in [21 . 

Similarly, by integrating the third and fourth of equations (2.1) we 

obtain relations for the conservation of mass and energy. 

As was mentioned at the outset, a single one of the relations for 

the conservation of mass, energy, or momentum is insufficient for the 

unique specification of the solution on both sides of the surface of 
discontinuity. The additional relation is obtained from the examination 

of still another conservation law - the law of conservation of angular 

momentum. To obtain the relation for the conservation of angular 

momentum, we multiply both sides of the first of equations (2.1) by 

y - A(Q to) and integrate over the region Q. Transforming the y de- 
rivatives by means of the formulas 
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[Y - A (X0, to)1 afg = a IY - A (zo1 to11 PUU _ puv 

8Y 

[y - A (x09 to)1 P$ = ${[Y - A (x01 to)lP$}- P$ 

noting that the functions 

PU I?/--- A( 209 4J1, pu2 iy - A (~0, to)19 PUV [y - A (x0, to)] 

P [Y - A (~0, toll, g [y - A (xc,, &,)I 

vanish on the surface of discontinuity itself and are continuous in its 

neighborhood, and using relations (2.4), we find 

4uzp (2x1 - u,) + 0 (a2z) + 0 (az2) - \ fx[y-A(zo,to)] dx dy dt = 0 (2.10) 
a 

But, in analogy with the foregoing 

s 
fx[y-A(xo, to)] dxdy dt = 4azM + 0 (a"%) + 0 (UT") (2.11) 

61 

where IV is the magnitude of the moment of the concentrated couple on 

the surface of discontinuity. Substituting this into (2.10) and passing 

to the limit T - 0 and a - 0, we obtain 

P (6 ---us)= M (2.12) 

so that the jump in the longitudinal component of velocity is pro- 
portional to the magnitude of the couple applied on the surface of dis- 

continuity. In particular, if the couple is absent (free surface of dis- 

continuity), then the longitudinal component of velocity must be con- 

tinuous. 

'lhe condition of continuity of the temperature Tl = T2 is obtained 
by an almost literal repetition, as applied to the last of equations of 

the system (2.1), of the arguments used in the derivation of the condi- 

tions of continuity of the tangential velocity. Instead of the condi- 

tion of the absence of an external couple on the surface of discontinu- 

ity, we use here the condition of the absence of so-called concentrated 

"heat dipoles" on the surface of discontinuity. The term "heat dipole" 

is understood to mean, as is usual, the concentrated excitation which 

is obtained in the limit by placing heat sources of opposite signs at a 

certain distance apart, and then decreasing to zero the distance between 

the sources while proportionately increasing the sources' strength. The 

absence of temperature dipoles may also be treated as the absence of 

concentrated thermal resistance on the surface of discontinuity. 
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3. The arguments that have been introduced can be extended directly 

to an extremely wide class of dissipative media, for which the relation 

between the stress and strain rate tensors can be written in the form 

a"kl a%/([ 
&kZ, Aaaz, , A,, c , . . . , 

a"kl 

a B 
ikl, Baa ,. . . (3.1) 

a 

where f is an arbitrary, sufficiently smooth function which admits of 

the required invariance. In such media, the conditions of conservation 

of mass, energy, and momentum on the surface of discontinuity are, 

generally speaking, insufficient, and it is necessary to obtain addi- 

tional conditions from moment relations of higher order - analogously 

to what was done above for a viscous fluid. 

As an example, we consider a medium for which the relation between 

the stress and the strain rates is of the form 

fij 1 
a2Eij 

-J& + Wj + AM ar,azp 

In the one-dimensional case (u = u(y, t), v E 0) 

zxtr = pg +x a& 

we have 

(3.2) 

(3.3) 

SO that the basic dynamical equation is of the form 

,+$+X;$ 

As previously, it may be shown that to determine 

(34 

the additional con- 

ditions on the surface of discontinuity it is necessary to bring in 

moment relations not only of zero and first order, but also of second 

and third order. In this case it is necessary to use the condition that 

the surface of discontinuity is free of concentrated excitations, or, 

to specify these excitations from an examination of the structure of a 

thin test region of the surface of discontinuity. For a discontinuity 

surface free of concentrated excitations, the conditions of continuity 

of velocity and its first derivative are obtained from moment relations 

of second and third order. 

It should be stressed that the absence of discontinuities in velo- 

city, in particular the instantaneous vanishing of discontinuities 

excited by any means, is specific to Newtonian viscous fluids. In other 

dissipative media, excited discontinuities do not, generally speaking, 

disappear, so that discontinuities may also exist in the absence of con- 

centrated excitations on the surface of discontinuity. For example, con- 

sider a medium with an equation of state of the form 

Zij = - phij + PEij + r)&j (3.5) 
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In the one-dimensional case we have 

1215 

(3.6) 

so that the basic dynamical equation takes on the form 

i)U 
Pz=P$+ll$ (3.7) 

Repeating the arguments, introduced in the previous sections, to this 

equation (see also [41), we find that the following relations are satis- 
fied on a surface of discontinuity free of concentrated excitations: 

(3.8) 

where, as before, the subscripts 1 and 2 denote values of quantities on 

different sides of the discontinuity surface. Integrating (3.8), we ob- 

tain 

(3.9) 

u1 - u2 = (ul - u,)t=t,e-p ct --tJ/n, ($), - (!L), = [& - (g),J&?-P (t--t&* 

so that, in such a medium, jumps that are excited for any reason what- 

ever decay exponentially with time for q f 0, and do not disappear in- 

stantaneously as they do in a Newtonian viscous fluid (IJ = 0). 

It may be remarked that in all cases the identical method of “smooth- 

ing” was used to derive the concentrated discontinuities on the surfaces 

of discontinuity. The introduction of external excitations in the region 

of smoothing means, mathematically, that in addition to the homogeneous 

equations, the corresponding equations with right-hand sides are con- 

sidered. As a result, the passage to the limit as the thickness of the 

region of smoothing goes to zero determines a limiting form of the rela- 

tion between jumps in the characteristics of the motion on the surface 

of discontinuity and integral characteristics of the right-hand sides of 

the equations - the concentrated excitations. In a number of cases, the 

application of the theory of generalized functions, which has been Well 

developed in recent times 15.61, avoids the necessity of introducing 

intermediate arguments. A fundamental role in the theory of generalized 

functions is played by the delta function, which, from a physical Point 

of view, represents a concentrated excitation (whose type is that of a 

concentrated force, concentrated flow of energy, mass. etc.). Successive 

differentiations of the delta function lead to concentrated excitations 

of other types (moments. temperature dipoles. etc.). 

It can be shown [6, p.1491 that all concentrated excitations may be 
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represented as a linear combination of delta functions and its deriva- 

tives in the right-hand side of the respective equations, so that these 

equations take on the form 

R(q, uz... ) = A8 + BB’ + 65” + ,.. (3.10) 

where ~1, ~2, . . . are unknown functions, and R is a differential oper- 
ator corresponding to the equation being considered. Since the order of 

this operator is bounded and all of the unknown functions are piecewise 

continuous, having at most discontinuities of the first type, the number 

of terms in the linear combination of the delta functions and its deri- 

vatives on the right-hand side of (3.10) is finite. The coefficients A, 

5, c. L.. are quantities that are applied to the system of concentrated 

excitations and, in accordance with the definition of the delta function 

and its derivatives, may be found by means of moment relations as was 

done above. 

The number of moment relations necessary for the unique specification 

of discontinuous solutions is equal to the order of the highest deriva- 

tive of the delta function on the right-hand side of (3.10). 

4. As has already been mentioned above, the surface of discontinuity 

may be studied by means of a thin test region, where the properties of 

the motion or of the medium change abruptly. In such cases concentrated 

excitations of one form or another may be generated not only by external 

means but by internal motions within the thin test region itself. Here, 

in order to obtain all of the 

relations on the surface of dis- lu, 
continuity, among them the con- 

centration of mass, energy, and 

momentum, it is necessary to 

investigate the internal struc- 

ture of the test region associ- 

ated with the surface of dis- 
“2 

continuity, or, as has been Fig. 3. 
done in many cases, to intro- 

duce additional hypotheses as to the quantity of concentrated 

entering into the equations of mass, momentum, and energy and 

moment relations. 

excitation 

into the 

We consider some examples. In the introduction of jumps of condensa- 

tion and detonation in an ideal gas, the heat generation is assumed to 

be given in the relationships for the conservation of energy On the sur- 

face of discontinuity. In reality, this is specified by processes with 

complicated kinetics that take place in a narrow zone. 

The impossibility of discontinuities in the normal component of 
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velocity in a viscous fluid in the absence of concentrated excitations 

does not contradict, for example, the possibility of jumps of condensa- 

tion and change in density in a compressible, viscous fluid. The pro- 

cess of condensation brings about a change in the equations of motion 

(at the expense of a change in the dependence of the stress tensor on 

strain rate) which in the limit is equivalent to the introduction of a 

concentrated excitation in a viscous fluid. The difficulty in studying 

the internal structure of the region of condensation has to do with the 

representation, for example, of the jump in density (which is equivalent 

to the specification of a concentrated excitation of the center of pres- 

sure type). In hydraulic investigations of so-called local resistances 

in pipes (gates, nets, diaphragms, etc. ), these resistances are replaced 

by surfaces of discontinuity. In the relations for the conservation of 

momentum on such a surface of discontinuity, the magnitude of the con- 

centrated force acting on the moving fluid is assumed given. Finally, 

we consider the motion of a viscous fluid through two closely-spaced 

parallel permeable plates (Fig. 3). The plates move. without sliding, 

one with respect to the other, by means of rolls to which couples are 

applied. Replacing the system of plates and rolls by a surface of dis- 

continuity, it is necessary in the relation for the conservation of 

momentum to specify the moment of the concentrated couples on the sur- 

face of discontinuity. 
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